Pii: S0925-7721(99)00027-9
نویسندگان
چکیده
We present a method for compressing non-manifold polygonal meshes, i.e., polygonal meshes with singularities, which occur very frequently in the real-world. Most efficient polygonal compression methods currently available are restricted to a manifold mesh: they require converting a non-manifold mesh to a manifold mesh, and fail to retrieve the original model connectivity after decompression. The present method works by converting the original model to a manifold model, encoding the manifold model using an existing mesh compression technique, and clustering, or stitching together during the decompression process vertices that were duplicated earlier to faithfully recover the original connectivity. This paper focuses on efficiently encoding and decoding the stitching information. Using a naive method, the stitching information would incur a prohibitive cost, while our methods guarantee a worst case cost of O(logm) bits per vertex replication, where m is the number of non-manifold vertices. Furthermore, when exploiting the adjacency between vertex replications, many replications can be encoded with an insignificant cost. By interleaving the connectivity, stitching information, geometry and properties, we can avoid encoding repeated vertices (and properties bound to vertices) multiple times; thus a reduction of the size of the bit-stream of about 10% is obtained compared with encoding the model as a manifold. 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
Pii: S0925-7721(01)00027-x
For a set P of points in the plane, we introduce a class of triangulations that is an extension of the Delaunay triangulation. Instead of requiring that for each triangle the circle through its vertices contains no points of P inside, we require that at most k points are inside the circle. Since there are many different higher-order Delaunay triangulations for a point set, other useful criteria...
متن کاملWorst-case-optimal algorithms for guarding planar graphs and polyhedral surfaces
We present an optimal (n)-time algorithm for the selection of a subset of the vertices of an nvertex plane graph G so that each of the faces of G is covered by (i.e. incident with) one or more of the selected vertices. At most bn=2 vertices are selected, matching the worst-case requirement. Analogous results for edge-covers are developed for two different notions of “coverage”. In particular, o...
متن کاملPii: S0925-7721(00)00010-9
We improve previous lower bounds on the number of simple polygonizations, and other kinds of crossing-free subgraphs, of a set of N points in the plane by analyzing a suitable configuration. We also prove that the number of crossing-free perfect matchings and spanning trees is minimum when the points are in convex position. 2000 Elsevier Science B.V. All rights reserved.
متن کاملIllumination by floodlights
We consider three problems about the illumination of planar regions with oodlights of prescribed angles. Problem 1 is the decision problem: given a wedge W of angle , n points p 1 ; ; p n in the plane and n angles 1 ; ; n summing up to , decide whether W can be illuminated by oodlights of angles 1 ; ; n placed in some order at the points p 1 ; ; p n and then rotated appropriately. We show that ...
متن کاملPii: S0925-7721(99)00016-4
Define a graph GT (n) with one node for each triangulation of a convex n-gon. Place an edge between each pair of nodes that differ by a single flip: two triangles forming a quadrilateral are exchanged for the other pair of triangles forming the same quadrilateral. In this paper we introduce a tree of all triangulations of polygons with any number of vertices which gives a unified framework in w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999